Seat No.

B.Tech. (Electronics) (Part - II) (Semester - III) (CBCS) Examination, November - 2019 **ENGINEERING MATHEMATICS - III**

Sub. Code: 73232

Total Marks: 70 Day and Date: Saturday, 23 - 11 - 2019

Time: 10.00 a.m. to 12.30 p.m.

Instructions: 1) All questions are compulsory.

- Figure to the right indicates full marks. 2)
- Use of non-programmable calculator is allowed. 3)

Q1) Choose the correct answer in each of the following.

[14]

a) The complete solution of
$$(D^3 + 2D^2 + D)y = 0$$
 is $y =$

i)
$$c_1 + (c_2 + c_3 x)e^{-2x}$$

ii)
$$c_1 + (c_2 + c_3 x)e^{-x}$$

iii)
$$c_1 + c_2 e^{2x} + c_3 e^{-x}$$
 iv) $c_1 + (c_2 + c_3 x) e^{x}$

iv)
$$c_1 + (c_2 + c_3 x)e^x$$

b) If
$$\phi = 4xyz^2 + 3xy^2z$$
 then $\nabla \phi$ at $(1, -1, -2)$ is

c) If
$$\overline{F} = xyz \ i + 3x^2y \ j + (xz^2 - y^2z)k$$
 then div \overline{F} at $(2, -1, 1)$ is

ii)
$$-14$$

$$iii$$
) $-2i+12j+3k$

iv)
$$2i+12i-3k$$

d) Let X = {p, q, r, s, t, u} and A(x) =
$$\frac{0.1}{p} + \frac{0.3}{q} + \frac{0.5}{r} + \frac{1}{s} + \frac{0.7}{t} + \frac{0.2}{u}$$
 then

 $^{0.5+}$ A is

i) $\{r, s, t\}$

 $\{p, s, t\}$ ii)

iii) $\{s, t\}$

- iv) $\{p, q, s, t\}$
- If two fair coins are tossed simultaneously then probability of getting exactly 2 heads is
 - i) 1/2

3/4 ii)

iii) 1/4 iv) 1

f)
$$L(e^{-4t}t)$$
 is

i)
$$\frac{1}{(s-4)^2}$$

ii)
$$\frac{s}{s^2+4}$$

iii)
$$\frac{1}{s+4}$$

iv)
$$\frac{1}{(s+4)^2}$$

g)
$$L^{-1}\left(\frac{1}{s^2+4s+4}\right)$$
 is

i) e^{2t}

ii) t^2e^t

iii) te^{-2t}

iv) te

Q2) Attempt any two of the following

[14]

a) Solve
$$4x^2 \frac{d^2y}{dx^2} + y = 19 \cos(\log x) + 22\sin(\log x)$$

b) If the fuzzy sets A and B are defined by

$$A(x) = \frac{0.8}{5} + \frac{0.5}{4} + \frac{0.7}{3} + \frac{0.3}{2} + \frac{0.1}{1}, \ B(x) = \frac{1}{1} + \frac{0.8}{2} + \frac{0.7}{3} + \frac{0.6}{4} + \frac{0.5}{5}$$

Find $A \cup B$, $A \cap B$ and $\overline{A} \cap \overline{B}$

c) Find the constants a. b. c if the directional derivative of $\phi(x,y,z) = axy^2 + byz + cx^2z^3$ at (1,2,-1) has maximum magnitude 64 in the direction parallel to the z axis.

Q3) Attempt any two of the following.

[14]

- a) Solve $(D^4 3D^2 4)y = 5 \sin 2x e^{-2x}$
- b) If the fuzzy sets A and B are defined by

$$A(x) = \frac{0.3}{x1} + \frac{0.9}{x2} + \frac{0.7}{x3} + \frac{0.6}{x4} + \frac{0.1}{x5}, \ B(x) = \frac{0.2}{x1} + \frac{0.4}{x2} + \frac{0.5}{x3} + \frac{0.7}{x4} + \frac{0.9}{x5}$$

calculate the degree of subset hood S(A, B) and S(B, A).

c) If \overline{r} is the position vector of a point (x, y, z) and r is the modulus of \overline{r} then prove that $r'' \overline{r}$ is an irrotational vector for any value of n but is solenoidal only if n = -3.

Q4) Attempt any two of the following

a) Obtain the Fourier series expansion for

$$f(x) = x \sin x$$
 for $-\pi < x < \pi$

- b) Find Laplace Transform of $e^{2t} \frac{1-\cos 2t}{t}$
- c) 1% of articles produces by a certain machine are defective. What is the probability of
 - i) No defective
 - ii) one defective
 - iii) two defective articles in sample of 100.
- Q5) Attempt any two of the following

[14]

a) Expand $f(x) = \pi x$ 0 < x < 1= 0 1 < x < 2

with period 2 into Fourier Series.

- b) Find Inverse Laplace Transform of $\frac{s^2}{(s^2+1)(s^2+9)}$ by using convolution theorem.
- c) An aptitude test for selecting engineers in an industry is conducted on 100 candidates. The average score is 42 and standard deviation is 24.

 Assuming normal distribution for the score find.
 - i) the number of candidates whose score is more than 60
 - ii) the number of candidates whose score lies between 30 and 60 (Given: S.N.V.z area for z = 0 to z = 0.75 is 0.2734, for z = 0 to 0.5 is 0.1915)

-3-

Total No. of P	iges: 3	
----------------	---------	--

Seat	
No.	

S.Y.B. Tech. (Semester - III) (CBCS) Examination, November - 2019 ELECTRONICS MEASUREMENT AND

INSTRUMENTATION

		Sub. Co	de:	73233	
\$45.5		: Tuesday, 26 - 11 - 2019 .m. to 12.30 p.m.			Total Marks: 70
Instruction	ms:	 All questions are com Figures to the right in Assume suitable data 	dicate	full marks.	
Q1) a)	C.R	.O. gives			[14]
	i)	Actual representation			
	ii)	Visual representation			
	iii)	Approximate representat	ion		
	iv)	Incorrect representation			
b)	Osc	illoscope is		<u>*</u>	
	i)	A ohmmeter	ii)	An ammeter	
	iii)	A voltmeter	iv)	A multimeter	
c)	Elec	tron beam is deflected in	1	•	
	i)	1 direction	ii)	4 direction	
	iii)	3 directions	iv)	2 directions	
d)	CRO	D is a			
	i)	Fast x-y plotter	ii)	Slow x-y plotter	
	iii)	medium x-y plotter	iv)	not a plotter	
e)	CRO) can't display microseco	nds t	ime.	
	i)	True	ii)	False	

f)	CR	T is the heart of CRO.		
	i)	True	ii)	False
<u>g</u>)	Туј	pically oscilloscope repr	esents	S,
	i)	Current and time	ii)	Resistance and time
	iii)	Voltage and time	iv)	Power and time
h)	Me	chanical transducers sen	se	
	i)	Electrical changes	ii)	Physical changes
	iii)	Chemical changes	iv)	Biological change
i)	Me	chanical transducers gen	erate_	
	i)	Electrical signals	ii)	Chemical signals
	iii)	Physical signals	iv)	Biological signals
j)	Ele	ctrical transducers genera	ate	
	i)	Biological signals	ii)	Chemical signals
	iii)	Physical signals	iv)	Electrical signals
k)	Elec	ctrical signals are easy to a	ampli	fy.
	i)	True	ii)	False
l)	The	power needs of electricate	al trai	nsducers is
	i)	Maximum	ii)	Minimum
	iii)	zero	iv)	Infinite
m)	Cha	nge in output of sensor w	ith cl	nange in input is
	i)	Threashold	ii)	Slew rate
	iii)	Sensitivity	iv)	None of the mentioned
n)	Sma	illest change which a sen	sor ca	nn detect is
	i)	Resolution	ii)	Accuracy
	iii)	Precision	iv)	Scale

Q2) Solve Any two

14

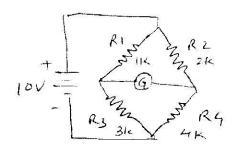
- a) What is Error? Explain different types of errors in measurement.
- b) Explain successive approximation type DVM with neat block diagram.
- c) Explain with neat block diagram Dual Beam CRO.

Q3) Solve any two

14

- a) Explain Ohm-meter in detail.
- b) Explain Digital frequency meter with neat block diagram.
- c) Explain with neat block diagram Digital Storage CRO.

Q4) Solve Any Two


14

- a) Explain Thermocouple. What is cold junction compensation?
- b) Explain Kelvins Bridge. Write drawback of wheatstones bridge.
- c) Explain Pulse generator with neat block diagram.

Q5) Solve Any Two

14

- a) Explain Capacitive transducer in detail.
- b) An unbalanced wheatstones Bridge is shown in fig. Find current through the Galvanometer.

c) Explain Fourier analyzer with neat block diagram.

Seat	
No.	

S.Y. B.Tech. (Electronics Engineering) (Semester - III) Examination, November - 2019 ELECTRONICS CIRCUIT DESIGN - I

	Sub. Code: 73234				
		e : Thursday, 28 - 11 - 2019 a.m. to 12.30 p.m.		Total Marks: 70	
Instructi	ions :	 All questions are compute Figures to the right indice Assume suitable data, if Std. data sheets/tables, no 			
Q1) Fil	l in th	e blanks with correct answer a	and rev	write the complete statement.[14]	
a)	The	e forward voltage drop across	a silic	on diode is about	
	i)	2.5V	ii)	3V	
	iii)	10V	iv)	0.7V	
b)	A z	zener diode is always		_ connected.	
	i)	reverse	ii)	forward	
	iii)	either reverse or forward	iv)	none of the above	
c)	Αz	ener diode is destroyed if it		•	
	i)	is forward biased			
	ii)	is reverse biased			
	iii)	carries more than rated curr	ent		
	iv)	none of the above			
d)		PIV rating of each diode in of the equivalent Centre-tap r		ge rectifier isr.	
	i)	one-half	ii)	the same as	
	iii)	twice	iv)	four times	

e)	W	nich of the following is not a nec	cessai	y component in a clamper circu
	i)	Diode	ii)	Capacitor
	iii)	Resistor	iv)	Independent DC Supply
f)	A	differentiator is a		
	i)	High pass R-C Circuit with a	a larg	e time constant
	ii)	Low pass R-C Circuit with a	very	small time constant
	iii)	Low pass R-C Circuit with a	large	e time constant
	iv)	High pass R-C Circuit with a	very	small time constant
g)	The	e form factor for half wave rec	tified	d sine wave is
	i)	1.0	ii)	1.11
	iii)	1.44	iv)	1.57
h)	The	potential divider bias used in	ampli	ifier to
	i)	limit the input AC signal goir	ng to 1	the base
	ii)	reduce DC base current		
	iii)	reduce the cost of the circuit	by liı	miting the number of resistors
	iv)	make the operating point alm	ost in	ndependent of β
i)	The	ideal value of stability factor i	S	
	i)	1	ii)	5
	iii)	10	iv)	100
j)	Ifa	JFET has IDSS=8mA and VP	=4V,	then R _{DS} equals
	i)	$200~\Omega$	ii)	320 Ω
	iii)	500 Ω	iv)	5Κ Ω

K)	A	s compared to transistor ampli	fier Jl	FET amplifier has
	i)	Higher voltage gain, less in	put in	npedance
	ii)	Less voltage gain, less inpu	t imp	edance
	iii)	Less voltage gain, higher in	put in	npedance
	iv)	Higher voltage gain, higher	input	impedance
1)	In	an RC coupled amplifier, the	voltag	ge gain over mid-frequency range
	i)	Changes abruptly with frequ	iency	
	ii)	Is constant		
	iii)	Changes uniformly with free	juenc	y
	iv)	None of the above		
m)	RC	coupling is not used to ampli	fy ex	tremely low frequencies because
	-	*		
	i)	There is considerable power	loss	
	ii)	There is hum in the output		
	iii)	Electrical size of coupling ca	pacit	or becomes very large
	iv)	None of the above		
n)	If the	ne collector supply is 10V, the ditions is	n col	lector cut off voltage under d.c.
	i)	20 V	ii)	5 V
	iii)	2 V	iv)	10 V

Q2) Attempt any Two.

[14]

- a) In a center-tapped full wave rectifier, the rms half secondary voltage is 9V. Assume ideal diodes and load resistance $RL = 1K\Omega$. Find.
 - i) Peak Current
 - ii) DC Voltage
 - iii) Ripple factor
- b) Explain:
 - i) Protection circuits for regulator
 - ii) Line regulation and Load Regulation
- c) A 100 Vpp symmetrical square wave having a period of 100µS is applied as the input to RC differentiator having time constant of 10mS. Sketch the output and calculate the dc values of output.

Q3) Attempt any Two.

[14]

- a) With circuit diagram explain Voltage Tripler and Quadrupler Circuits.
- b) Explain "C" filter using center tapped full wave rectifier. Draw necessary waveforms. Derive equation for ripple factor.
- e) Design a series pass voltage regulator to provide output voltage of 12V at 50mA. The unregulated input is 20V.

Q4) Solve any Two.

[14]

- a) Derive generalize equations for Av, Ai Ri and Ro for CE amplifier using hybrid parameters.
- b) Derive stability factor for voltage divider biasing of CE amplifier.
- Design single stage R-C coupled CE amplifier considering following data: $V_{CC} = 12V$, Av = 150, $f_{L} = 50Hz$, $f_{H} = 20KHz$, hie = 4.5kohm, $R_{S} = 500$ ohm, $R_{L} = 2$ Kohm, hfe = 330 and stability factor = 5.

Q5) Solve any Two.

- a) Explain working and construction of Enhancement type MOSFET with all characteristics.
- b) What is h-parameter? Determine h-parameters using characteristics of BJT connected in CE mode and explain hybrid equivalent circuit.
- c) Explain CS amplifier for FET with suitable characteristics, mention its applications.

	 ••
d'a	
Seat	
DUALE	
51000 10000	
Nie	
INO.	
3-3-5-7	

S.Y.B. Tech. (Electronics) (Part-II) (Semester - III) (CBCS) Examination, November - 2019 ANALOG COMMUNICATION

	ANALOG COMMUNICATION Sub. Code: 73235					
470			rday, 30 - 11 - 2019 12.30 p.m.	ue. /	Total Marks : 70	
Instruction	is:	1) 2) 3)	All questions are com Figures to the right in Assume suitable data	dicate	full marks.	
Q1) To e	opria	ate alt	ernative as the answ	er.	rnatives have been given. Select the [14]	
a)	In f	reque Iulati	ency modulated signing signal frequency	nal wi is 1 K	th frequency deviation is 75 and if Hz KHz. Band width required will be	
	i)	100	KHz	ii)	152 KHz	
	iii)	160	KHz	iv)	200 KHz	
b)			olitude modulated sy then modulation inc		if total power is 600 W carrier power	
	i)	.5		ii)	.75	
	iii)	.9		iv)	1	
c)	Ang Pea	gle mo k frec	odulated signal expro quency deviation of c	essed earrier	by e=Cos $(2\times10^8\pi \text{ t}+75\text{Sin }2\times10^3\pi \text{ t})$. is then.	
	i)	75 F	ζhz	ii)	1 KHz	
	iii)	3.2	KHz	iv)	7.5 KHz	
d)	In T	DM	system each signal i	s allot	ted in frame unique and fixed	
	i)	frec	luency slot	ii)	phase slot	
	iii)	time	e slot	iv)	amplitude slot	
e)	Ali	asing	occurs when the Ny	quist	rate is	
	i)	2 fn	n	ii)	3 fm	
	iii)	2.5	fm	iv)	1.2 fm	
					Р.Т.О.	

f)	T	he PWM needs		
	i)	more power tha	ın PPM	
	ii)	more bandwidt	h than PPM	
	iii) more samples p	er second t	han P
	iv			
g)	M	lodulation index of	AM wave i	s changed from 0 to 1. The transmitted
	pc	ower is		
	i)	unchanged	ii)	increased by 50%
17 4 0_15	iii)	Programme bottom of the programme of the	iv	4 1 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
h)	in 20	AM receiver if inte 00 KHz will be	rmediate fre	equency is 455 KHz image frequency at
	i)	20 00 000	**\	2010 7777
	iii)		ii)	2010 KHz
i)	35		iv)	
-,	i)	DSB-SC signal		neration of which of the following.
	iii)	FM signal	ii) iv)	PM signal
j)		I signal can be dete		
J.6	i)	LPF	ii)	Discriminator
	iii)	BPF	iv)	
k)	Tw	o resistors 20k and		eries at room temperature (290°K). At
	the	bandwidth of 100k	Hz thermal	noise voltage is $(K=1.38\times10^{-23}\text{J/K})$
	1)	$10.59 \mu\mathrm{V}$	ii)	11.59 μV
	iii)	$09.59~\mu\mathrm{V}$	iv)	12.59 μV
1)	Lin	niter is not essential	in following	g detector:
	i)	balanced slope	ii)	ratio
	iii)	foster-seeley	iv)	none
m)	Wh	ich one of the follo	wing blocks	s is not common in both AM and FM
	rece	iver.		of the contract and the
	i)	RF amplifier	ii)	If amplifier
	iii)	Mixer	iv)	Slope detector
n)	PLL	can be used to der		1
	i)	Am signal	ii)	FM signal
	iii)	SSB signal	iv)	USB-Sc signal

Q2) Solve Any two

[14]

- a) Derive the expression for amplitude modulated wave which contains three terms carrier, USB and LSB
- b) Explain working of balanced modulator with circuit diagram
- c) Explain in brief Burst noise and partition noise

Q3) Solve any two

[14]

- a) Describe how Bessel's functions are useful for determining bandwidth with proper mathematical expression.
- b) Compare AM and FM systems with their spectrum.
- c) Write note on Thermal Noise

Q4) Solve Any Two

 $|2 \times 7 = 14|$

- a) Explain the following performance parameters for radio receiver.
 - i) Sensitivity
 - ii) Selectivity
 - iii) Fidelity
- b) Explain with block diagram P.L.L. method for detection of frequency modulated signal.
- c) Differentiate between natural Sampling and flat top sampling.

Q5) Solve Any Two

- a) Explain negative peak clipping and diagonal peak clipping.
- b) Compare TDM and FDM
- c) With circuit diagram Explain ratio detector for demodulation of FM signal.

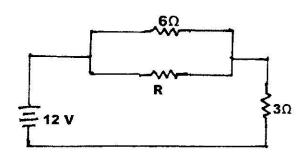
Seat	
No.	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

S.Y. B. Tech. (Electronics Engg.) (Semester - III) (CBCS) (Revised) Examination, December - 2019 LINEAR CIRCUITS

Sub. Code: 73236

Day and Date: Tuesday, 3 - 12 - 2019

Total Marks: 70


Time: 10.00 a.m. to 12.30 p.m.

Instructions: 1) All questions are compulsory.

- 2) Use suitable assumptions if required.
- 3) Use nonprogrammable calculator.
- Q1) Select correct options from given multiple choices.

[14]

a) To have transfer of maximum power from source to 3Ω resistor, the value of resistor R will be equal to

i) 2Ω

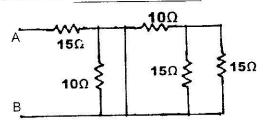
ii) 6Ω

iii) 16Ω

- iv) 9Ω
- b) The network has 7 nodes and 5 independent loops. The number of branches in the network is ______.
 - i) 13

ii) 12

iii) 11


- iv) 10
- c) In series RLC circuit $R = 10 \Omega$, L = 0.01 H and $C = 100 \mu \text{ F}$. The quality factor Q of circuit at resonance is ______.
 - i) 1

ii) 10

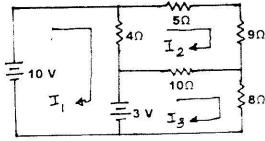
iii) 0.1

iv) 100

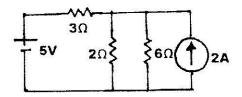
d) For the network given below the equivalent resistor looking through terminals A and B is ______.

- i) 10Ω
- iii) 15Ω

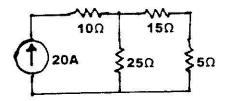
- ii) 25Ω
- iv) 15.5Ω
- e) For a two port reciprocal network, the three transmission parameters are given by A = 4, B = 7 and C = 5. The value of D is equal to
 - i) 8.5


ii) 9

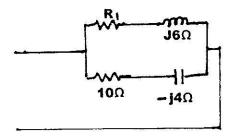
iii) 9.5


- iv) 8
- f) A stable system must have
 - i) Zero or negative real part for poles and zeros.
 - ii) At least one pole or zero lying in the right half s plane
 - iii) Positive real part for any pole or zero
 - iv) Negative real part for all poles and zeros.
- g) In band elimination filter, the frequency of resonance of individual arms is geometric _____.
 - i) Mean of two cut-off frequencies
 - ii) Difference of two cut-off frequencies
 - iii) Product of two cut-off frequencies
 - iv) Division of two cut-off frequencies
- Q2) Solve any TWO.

[14]

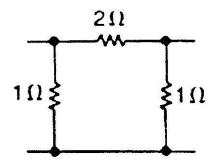

Using mesh analysis find the loop currents I_1 , I_2 and I_3 in the circuit given below.

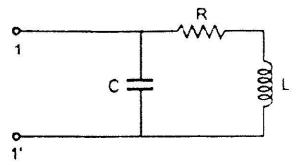
b) In the network given below find the current I through resistor 2Ω using superposition theorem.



c) Find the voltage across 5Ω resistor and verify the reciprocity theorem for the circuit given below.

Q3) Answer any TWO.


- a) For series RLC circuit derive the equation for the frequency at which voltage across the capacitor and inductor is maximum.
- b) A variable inductor, a resistor and capacitor are connected in series across 200 V, 50 Hz source. The maximum current obtained by varying inductance is 0.314 A. The voltage across capacitor at resonance is measured to be 300 V. Find vales of R, L, C of circuit.
- c) Find the value of resistor R₁ in given below circuit so that circuit will resonate.


Q4) Answer any TWO.

[14]

a) Two identical sections of network shown in figure are connected in parallel. Obtain 'Y' parameters of resulting network.

b) Find driving point admittance function for the given one port network.

c) What is attenuator? Derive design equations for symmetrical T-type attenuator.

Q5) Answer any TWO.

- a) Derive the equations for Y parameters in terms of Z parameters.
- b) Explain the significance of poles and zeros.
- c) Design an m derived low pass filter (T and π section) having design resistance $R_0 = 500 \Omega$, cut off frequency $f_c = 1500$ Hz and infinite attenuation frequency $f_{\infty} = 2000$ Hz.